ON TOTALLY UMBILICAL SUBMANIFOLDS OF S^{n+p}

BY

HUAFEI SUN*

Department of Mathematics, Kumamoto University, Kumamoto 860-8555, Japan e-mail: sun@math.sci.kumamoto-u.ac.jp

ABSTRACT

In this paper, we will give some conditions under which the submanifolds in a unit sphere are totally umbilical.

0. Introduction

Let S^{n+p} be an $(n+p)$ -dimensional unit sphere of constant curvature 1 and M^n an *n*-dimensional compact submanifold isometrically immersed in S^{n+p} . The following results are well-known.

THEOREM A [4]: Let $Mⁿ$ be an *n*-dimensional compact minimal submanifold in S^{n+p} , $p > 1$. If the scalar curvature of M^n is larger than or equal to $\frac{1}{2}n(3n-5)$, *then* M^n *is totally geodesic or a Veronese surface in* S^4 .

THEOREM B [9]: Let $Mⁿ$ be an *n*-dimensional compact minimal submanifold in S^{n+p} . If the sectional curvature of M^n is larger than or equal to $(p-1)/(2p-1)$, then $Mⁿ$ is totally geodesic, the standard immersion of the product of the two spheres or a Veronese surface in $S⁴$.

THEOREM C [3]: Let M^n be an *n*-dimensional compact minimal submanifold *in* S^{n+p} , $n > 4$. If the Ricci curvature of M^n is larger than $n-2$, then M^n is *totally geodesic.*

Let h be the second fundamental form of the immersion and ξ be the mean curvature vector; $\langle \cdot, \cdot \rangle$ denotes the scalar product of S^{n+p} . If there exists a function λ on M^n such that

$$
(*)\qquad h(X,Y),\xi>=\lambda
$$

^{*} This research was partially supported by JSPS. Received June 23, 1997

for any tangent vectors X, Y on M^n , then M^n is called a pseudo-umbilical submanifold of S^{n+p} (cf. [1]). It is clear that $\lambda \geq 0$, and it is known that the mean curvature $H = |\xi|$ of M^n is constant (cf. Lemma 1). If the mean curvature vector $\xi = 0$ identically, then M^n is called a minimal submanifold of S^{n+p} . Every minimal submanifold of S^{n+p} is itself a pseudo-umbilical submanifold.

In this paper, we study pseudo-umbilical submanifolds and generalize Theorems A, B and C. We assume that the mean curvature H of M^n is not zero. Our results are the following:

THEOREM 1: Let M^n be an n-dimensional compact pseudo-umbilical submanifold in S^{n+p} , $p > 1$. If the scalar curvature of M^n is larger than or equal to $\frac{1}{3}n(3n-5)(1+H^2)$, then M^n is totally umbilical or $n=2$ and M^2 is a *Veronese surface in* $S^4(\frac{1}{\sqrt{1+H^2}})$.

THEOREM 2: Let M^n be an *n*-dimensional compact pseudo-umbilical submanifold in S^{n+p} , $p > 1$. If the sectional curvature of M^n is larger than *or equal to* $\frac{3p-5}{6(p-1)}(1 + H^2)$, *then* M^n *is totally umbilical or* $n = 2$ *and* M^2 *is a Veronese surface in* $S^4(\frac{1}{\sqrt{1+H^2}})$.

THEOREM 3: Let M^n be an n-dimensional compact pseudo-umbilical submanifold in S^{n+p} , $p > 1$, $n > 4$. If the Ricci curvature of M^n is larger *than* $(n-2)(1+H^2)$ *, then* M^n *is totally umbilical.*

Remark: It is clear that our results generalize Theorem A, B and C.

ACKNOWLEDGEMENT: I would like to thank K. Ogiue for his advice and encouragement and would like to express my thanks to the referee for valuable suggestions.

1. Local formulas

Let S^{n+p} be an $(n+p)$ -dimensional unit sphere of constant curvature 1 and M^n an *n*-dimensional pseudo-umbilical manifold isometrically immersed in S^{n+p} . We choose a local field of orthonormal frames e_1, \ldots, e_{n+p} in S^{n+p} such that e_1, \ldots, e_n are tangent to M^n . We make use of the following convention on the ranges of indices:

$$
A,B,\ldots=1,\ldots,n+p; \quad i,j,\ldots=1,\ldots,n; \quad \alpha,\beta,\ldots=n+1,\ldots,n+p.
$$

Then the structure equations of S^{n+p} are given by

$$
d\omega_A = -\sum_B \omega_{AB} \wedge \omega_B, \omega_{AB} + \omega_{BA} = 0,
$$

$$
d\omega_{AB} = -\sum_C \omega_{AC} \wedge \omega_{CB} + \frac{1}{2} \sum_{CD} K_{ABCD} \omega_C \wedge \omega_D,
$$

$$
K_{ABCD} = \delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC}.
$$

Restrict these forms to M^n . Then

$$
\omega_{\alpha} = 0, \quad \omega_{i\alpha} = \sum_{j} h_{ij}^{\alpha} \omega_{j}, \quad h_{ij}^{\alpha} = h_{ji}^{\alpha},
$$

$$
d\omega_{i} = -\sum_{j} \omega_{ij} \wedge \omega_{j},
$$

$$
d\omega_{ij} = -\sum_{k} \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \sum_{kl} R_{ijkl} \omega_{k} \wedge \omega_{l},
$$

$$
(1.1)
$$

$$
R_{ijkl} = \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} + \sum_{\alpha} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),
$$

$$
d\omega_{\alpha} = -\sum_{\beta} \omega_{\alpha\beta} \wedge \omega_{\beta},
$$

$$
d\omega_{\alpha\beta} = -\sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} + \frac{1}{2} \sum_{ij} R_{\alpha\beta ij} \omega_i \wedge \omega_j,
$$

$$
(1.2) \qquad R_{\alpha\beta ij} = \sum_{k} (h_{ki}^{\alpha} h_{kj}^{\beta} - h_{kj}^{\alpha} h_{ki}^{\beta}).
$$

We call $H = |\xi| = \frac{1}{n} \sqrt{\sum_{\alpha} (\sum_{i} h_{ii}^{\alpha})^2}$ the mean curvature of M^n and $S =$ $\sum_{i} (h_{ij}^{\alpha})^2$ the square of the length of h; h_{ijk}^{α} and h_{ijkl}^{α} are defined by

(1.3)
$$
\sum_{k} h_{ijk}^{\alpha} \omega_k = dh_{ij}^{\alpha} + \sum_{k} h_{ik}^{\alpha} \omega_{kj} + \sum_{k} h_{kj}^{\alpha} \omega_{ki} - \sum_{\beta} h_{ij}^{\beta} \omega_{\beta \alpha}
$$

and

$$
\sum_{l} h_{ijkl}^{\alpha} \omega_l = dh_{ijk}^{\alpha} + \sum_{l} h_{ijl}^{\alpha} \omega_{lk} + \sum_{l} h_{ilk}^{\alpha} \omega_{lj} + \sum_{l} h_{ljk}^{\alpha} \omega_{li} - \sum_{\beta} h_{ijk}^{\beta} \omega_{\beta \alpha}
$$

respectively;

$$
h_{ijkl}^{\alpha} - h_{ijkl}^{\alpha} = \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{m} h_{mj}^{\alpha} R_{mikl} + \sum_{\beta} h_{ij}^{\beta} R_{\beta \alpha kl}
$$

where $h_{ijk}^{\alpha} = h_{ikj}^{\alpha}$. By (1.1) we have

(1.4)
$$
R_{ij} = (n-1)\delta_{ij} + \sum_{\alpha} (h_{ij}^{\alpha} \sum_{k} h_{kk}^{\alpha}) - \sum_{k\alpha} h_{ki}^{\alpha} h_{kj}^{\alpha}.
$$

Now, let ξ be parallel to e_{n+p} ; then

(1.5)
$$
\operatorname{tr} H_{n+p} = nH, \quad \operatorname{tr} H_{\alpha} = 0, \quad \alpha \neq n+p.
$$

In order to prove our Theorems we need the following:

LEMMA 1 [5]: *The* mean curvature of *pseudo-umbilical submanifolds* in a space form *of constant curvature is constant.*

LEMMA 2 [4]: Let H_i ($i \geq 2$) be symmetric $(n \times n)$ -matrices, $S_i = \text{tr } H_i^2$ and $S = \sum_i S_i$. Then

$$
\sum_{ij} N(H_i H_j - H_j H_i) + \sum_{ij} (\text{tr } H_i H_j)^2 \le \frac{3}{2} S^2
$$

and equality holds if and only if all $H_i = 0$ or there exist two H_i different from *zero.* Moreover, if $H_1 \neq 0$, $H_2 \neq 0$, $H_i = 0$ (i $\neq 1,2$), then $S_1 = S_2$ and there *exists an orthogonal* $(n \times n)$ -matrix T such that

$$
TH_1{}^t T = \begin{pmatrix} f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad TH_2{}^t T = \begin{pmatrix} 0 & f & 0 \\ f & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{where } f = \sqrt{\frac{S_1}{2}}.
$$

Using Lemma 1 and a direct calculation we have (cf. [2, 9])

$$
(1.6) \quad \frac{1}{2}\Delta \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2 = \sum_{ijk\alpha\neq n+p} (h_{ijk}^{\alpha})^2 + \sum_{ij\alpha\neq n+p} h_{ij}^{\alpha}\Delta h_{ij}^{\alpha}
$$

$$
= \sum_{ijk\alpha\neq n+p} (h_{ijk}^{\alpha})^2 + \sum_{ijk\alpha\neq n+p} h_{ij}^{\alpha}h_{kkij}^{\alpha}
$$

$$
+ \sum_{ijk\alpha\neq n+p} h_{ij}^{\alpha}h_{ik}^{\alpha}R_{lijk} + \sum_{ijk\alpha\neq n+p} h_{ij}^{\alpha}h_{li}^{\alpha}R_{lkik}
$$

$$
+ \sum_{ijk\alpha\neq n+p} h_{ij}^{\alpha}h_{ki}^{\beta}R_{\alpha\beta kj}.
$$

2. Proofs of Theorems

From (*) and (1.5) we get \sum_{α} tr $H_{\alpha}h_{ij}^{\alpha} = n\lambda \delta_{ij}$, $H^2 = \lambda$ and

$$
(2.1) \t\t\t\t h_{ij}^{n+p} = H\delta_{ij}.
$$

Using (2.1) and (1.4) we obtain

$$
(2.2) \frac{1}{2} \Delta \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
= \sum_{ijk\alpha\neq n+p} (h_{ijk}^{\alpha})^2 + n \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2 + \sum_{ijm k\beta\alpha\neq n+p} h_{ij}^{\alpha} h_{mi}^{\beta} h_{jm}^{\alpha} h_{kk}^{\beta}
$$

\n
$$
+ 2 \Biggl[\sum_{\beta\alpha\neq n+p} \text{tr}(H_{\alpha} H_{\beta})^2 - \sum_{\beta\alpha\neq n+p} \text{tr}(H_{\alpha}^2 H_{\beta}^2) \Biggr] - \sum_{\beta\alpha\neq n+p} [\text{tr}(H_{\alpha} H_{\beta})]^2
$$

\n
$$
= \sum_{ijk\alpha\neq n+p} (h_{ijk}^{\alpha})^2 + n \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2 + \sum_{ijkm\beta\alpha\neq n+p} h_{ij}^{\alpha} h_{mi}^{\alpha} h_{mj}^{\beta} h_{kk}^{\beta}
$$

\n
$$
+ 2 \Biggl[\sum_{\beta,\alpha\neq n+p} \text{tr}(H_{\alpha} H_{\beta})^2 - \sum_{\beta,\alpha\neq n+p} \text{tr}(H_{\alpha}^2 H_{\beta}^2) \Biggr] - \sum_{\beta,\alpha\neq n+p} [\text{tr}(H_{\alpha} H_{\beta})]^2
$$

\n
$$
+ 2 \Biggl[\sum_{\alpha\neq n+p} \text{tr}(H_{\alpha} H_{n+p})^2 - \sum_{\alpha\neq n+p} \text{tr}(H_{\alpha}^2 H_{n+p}^2) \Biggr] - \sum_{\alpha\neq n+p} [\text{tr}(H_{\alpha} H_{n+p})]^2
$$

\n
$$
= \sum_{ijk\alpha\neq n+p} (h_{ijk}^{\alpha})^2 + n \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2 + nH^2 \sum_{\alpha\neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
- \sum_{\beta,\alpha\neq n+p} N(H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha}) - \sum_{\beta,\alpha\neq n+p} [\text{tr}(H_{\
$$

When $p = 2$, by a simple calculation from (2.2) we get

$$
\frac{1}{2}\Delta\sum_{ij}(h_{ij}^{n+1})^2 \geq [n(1+2H^2)-S]\sum_{ij}(h_{ij}^{n+1})^2.
$$

It shows that when $S < n(1 + 2H^2)$, then $\sum_{ij}(h_{ij}^{n+1})^2 = 0$ and M^n is totally umbilical.

When $p \geq 3$, applying Lemma 2 to (2.2) we get

$$
(2.3) \n\frac{1}{2}\Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 \n\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + n \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 - \frac{3}{2} \Big[\sum_{\alpha \neq n+p} \text{tr } H_{\alpha}^2 \Big]^2 + nH^2 \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 \n\geq n \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 - \frac{3}{2} \sum_{\alpha \neq n+p} (h_{ij}^{\alpha})^2 (S - nH^2) + nH^2 \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 \n= \left(n - \frac{3}{2}S + \frac{5}{2}nH^2\right) \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2.
$$

Since M^n is compact, we see from (2.2) that when

$$
S \le \frac{2}{3}n\Big(1+\frac{5}{2}H^2\Big)
$$

or the scalar curvature R of M^n satisfies

$$
R \ge \frac{1}{3}n(3n-5)(1+H^2),
$$

then $\sum_{ij\alpha\neq n+p}(h_{ij}^{\alpha})^2=0$, i.e. M^n is totally umbilical or $S=\frac{2}{3}n(1+\frac{5}{2}H^2)$. In the latter case, using the same method as in [2] we conclude that $n = 2$ and the equality

$$
\sum_{\alpha,\beta\neq n+p} N(H_{\alpha}H_{\beta}-H_{\beta}H_{\alpha})+\sum_{\alpha,\beta\neq n+p} (\text{tr } H_{\alpha}H_{\beta})^2=\frac{3}{2}\bigg[\sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2\bigg]^2
$$

holds. Thus we may assume (2.4)

$$
H_{n+1} = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}, \quad H_{n+2} = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}, \quad H_{n+p} = \begin{pmatrix} H & 0 \\ 0 & H \end{pmatrix}, \quad H_{\alpha} = 0,
$$

where $a \neq 0$, $\alpha \neq n+1$, $n+2$, $n+p$.

Now we put

$$
S_{\alpha} = \sum_{ij} (h_{ij}^{\alpha})^2,
$$

\n
$$
p\sigma_1 = \sum_{\alpha} S_{\alpha} = S,
$$

\n
$$
p(p-1)\sigma_2 = 2 \sum_{\alpha < \beta} S_{\alpha} S_{\beta}.
$$

It can be seen easily (cf. [2]) that

(2.5)
$$
p^{2}(p-1)(\sigma_{1}^{2}-\sigma_{2})=\sum_{\alpha<\beta}(S_{\alpha}-S_{\beta})^{2}.
$$

By a direct calculation, using (2.4), we get

(2.6)
$$
p^2(p-1)\sigma_1^2 = (p-1)(4a^2 + 2H^2)^2,
$$

(2.7)
$$
p^2(p-1)\sigma_2 = p(8a^4 + 16a^2H^2),
$$

and

(2.8)
$$
\sum_{\alpha < \beta} (S_{\alpha} - S_{\beta})^2 = 8(a^2 - H^2)^2.
$$

Substituting $(2.6) - (2.8)$ into (2.5) we obtain

(2.9)
$$
(p-1)(4a^2+2H^2)^2-p(8a^4+16a^2H^2)=8(a^2-H^2)^2.
$$

From (2.9) we conclude

$$
(p-3)(2a^4 + H^4) = 0,
$$

because $2a^4 + H^4 \neq 0$, which implies $p = 3$. Thus by [2], we know that M^2 is a Veronese surface in $S^4(\frac{1}{\sqrt{1+H^2}})$. Since $\frac{2}{3}n(1+\frac{5}{2}H^2) < n(1+2H^2)$, when $p = 2$ and $S \n\t\leq \frac{3}{2}n(1+\frac{5}{2}H^2)$ or $R \geq \frac{(3n-5)}{n}(1+H^2)$, then M^n is totally umbilical. This completes the proof of Theorem 1.

Proof of Theorem 2: For any positive real number $a (0 < a < 1)$, we have

$$
(2.10) \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + (1+a) \Big(\sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{lk}^{\alpha} R_{lijk} + \sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{li}^{\alpha} R_{lkik} \Big)
$$

\n
$$
+ \sum_{ijk\alpha \neq n+p} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta kj} - a \Big(\sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{lk}^{\alpha} R_{lijk} + \sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{li}^{\alpha} R_{lkik} \Big)
$$

\n
$$
= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + (1+a) \Big(\sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{lk}^{\alpha} R_{lijk} + \sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{li}^{\alpha} R_{lkik} \Big)
$$

\n
$$
- na \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 - n H^2 a \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
+ \frac{1}{2} (a-1) \sum_{\beta \alpha \neq n+p} N (H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha}) + a \sum_{\alpha \neq n+p} (\text{tr } H_{\alpha} H_{\beta})^2.
$$

For fixed $\alpha \neq n + p$, we can choose e_1, \ldots, e_n such that $h_{ij}^{\alpha} = h_{ii}^{\alpha} \delta_{ij}$. Thus, we have $(cf. [9])$

$$
(2.11) \qquad \sum_{ijkl\alpha\neq n+p} h_{ij}^{\alpha}h_{lk}^{\alpha}R_{lijk} + \sum_{ijkl\alpha\neq n+p} h_{ij}^{\alpha}h_{li}^{\alpha}R_{lkik} \geq nK \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2,
$$

where K is the infimum of the sectional curvature of M^n .

When $p = 2$, from (2.10) and (2.11) we get

$$
\frac{1}{2}\Delta\sum_{ij}(h_{ij}^{n+1})^2 \ge (a+1)nK\sum_{ij}(h_{ij}^{n+1})^2 - na(1+H^2)\sum_{ij}(h_{ij}^{n+1})^2 + a[\sum_{ij}(h_{ij}^{n+1})^2]^2.
$$

It shows that when

$$
K \ge \frac{a}{a+1}(1+H^2),
$$

then $\sum_{ij}(h_{ij}^{n+1})^2 = 0$ and M^n is totally umbilical.

When $p \geq 3$, combining Lemma 2, (2.11) with (2.10) we get

$$
(2.12) \qquad \frac{1}{2}\Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 \geq [(1+a)nK - na - nH^2a] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 \n- \frac{3}{4}(1-a) (\sum_{\alpha \neq n+p} \text{tr } H_{\alpha}^2)^2 \n+ \frac{1}{2}(1+a) \sum_{\alpha,\beta \neq n+p} (\text{tr } H_{\alpha} H_{\beta})^2.
$$

On the other hand, we can choose e_{n+1},\ldots,e_{n+p-1} such that $tr H_{\alpha}H_{\beta}$ = tr $H^2_{\alpha} \delta_{\alpha\beta}$. So we have

(2.13)
$$
\sum_{\alpha,\beta\neq n+p} (\text{tr } H_{\alpha}H_{\beta})^2 = \sum_{\alpha\neq n+p} (\text{tr } H_{\alpha}^2)^2.
$$

The following inequality is obvious,

(2.14)
$$
\sum_{\alpha \neq n+p} (\text{tr } H_{\alpha}^2)^2 \geq \frac{1}{p-1} \bigg(\sum_{\alpha \neq n+p} \text{tr } H_{\alpha}^2 \bigg)^2,
$$

and the equality in (2.14) holds if and only if all $tr H_{\alpha}^2$ are equal. Substituting (2.13) and (2.14) into (2.12) and taking $a = (3p - 5)/(3p - 1)$, we get (2.15)

$$
\frac{1}{2}\Delta \left(\sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 \geq \left[\frac{6(p-1)n}{3p-1}K - \frac{(3p-5)n}{3p-1} - \frac{(3p-5)n}{3p-1}H^2 \right] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2.
$$

Vol. 117, 2000

So, when

(2.16)
$$
K \ge \frac{3p-5}{6(p-1)}(1+H^2),
$$

then $\sum_{ii\alpha\neq n+p}(h_{ii}^{\alpha})^2=0$, i.e. M^n is totally umbilical or

$$
K = \frac{3p-5}{6(p-1)}(1+H^2).
$$

In the latter case, the equality

$$
\sum_{\alpha,\beta\neq n+p} N(H_{\alpha}H_{\beta}-H_{\beta}H_{\alpha})+\sum_{\alpha,\beta\neq n+p} (\text{tr } H_{\alpha}H_{\beta})^2=\frac{3}{2}\bigg[\sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2\bigg]^2
$$

holds. Thus by Lemma 2 we see that all $H_{\alpha} = 0$, $\alpha \neq n + p$ and M^{n} is totally umbilical or there exist only two of $H_{\alpha} \neq 0$, $\alpha \neq n + p$. However, the equality (2.16) implies equality (2.14), so that all tr H^2_α are equal. This is a contradiction. This proves Theorem 2.

Proof of Theorem 3: We compute directly from (1.6):

$$
(2.17) \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

=
$$
\sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + n(1+H^2) \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

-
$$
\sum_{\alpha,\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) - \sum_{\alpha,\beta \neq n+p} (\text{tr } H_{\alpha}H_{\beta})^2
$$

=
$$
\sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + n(1+H^2) \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2 - \sum_{\alpha,\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})
$$

-
$$
\sum_{\alpha \neq n+p} (\text{tr } H_{\alpha}^2)^2.
$$

When $p = 2$, from (2.17) we get

$$
\frac{1}{2}\Delta\sum_{ij}(h_{ij}^{n+1})^2 \ge n(1+H^2)\sum_{ij}(h_{ij}^{n+1})^2 - \left(\sum_{ij}(h_{ij}^{n+1})\right)^2.
$$

On the other hand, by the assumption in Theorem 3 we get

$$
(n-2)(1+H^2) < R_{ii} = (n-1)(1+H^2) - \sum_{i} (h_{ij}^{n+1})^2
$$

102 H. SUN Isr. J. Math.

and so

$$
\sum_{ij} (h_{ij}^{n+1})^2 < n(1+H^2).
$$

Combining these two inequalities we get

$$
\frac{1}{2}\Delta \sum_{ij} (h_{ij}^{n+1})^2 \ge n(1+H^2) \sum_{ij} (h_{ij}^{n+1})^2 - \left(\sum_{ij} (h_{ij}^{n+1})^2\right)^2
$$

$$
\ge n(1+H^2) \sum_{ij} (h_{ij}^{n+1})^2 - n(1+H^2) \sum_{ij} (h_{ij}^{n+1})^2 = 0.
$$

From this we see that $\sum_{ij}(h^{n+1}_{ij})^2$ is constant and

$$
\[n(1+H^2) - \sum_{ij} (h_{ij}^{n+1})^2\] \sum_{ij} (h_{ij}^{n+1})^2 = 0,
$$

which implies that $\sum_{i,j}(h^{n+1}_{i,j})^2 = 0$, i.e. M^n is totally umbilical since $\sum_{i,j}(h^{n+1}_{i,j})^2$ $< n(1 + H^2)$. When $p \geq 3$, for fixed $\alpha \neq n + p$, we have

$$
\sum_{\beta\neq n+p} N(H_{\alpha}H_{\beta}-H_{\beta}H_{\alpha})=\sum_{ij\beta\neq\alpha,n+p} (h_{ij}^{\beta})^2(h_{ii}^{\alpha}-h_{jj}^{\alpha})^2.
$$

Since

$$
(h_{ii}^{\alpha} - h_{jj}^{\alpha})^2 \le 2[(h_{ii}^{\alpha})^2 + (h_{jj}^{\alpha})^2],
$$

we get

(2.18)
$$
\sum_{\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) \leq 4 \sum_{ij\beta \neq \alpha, n+p} (h_{ij}^{\beta})^2 (h_{ii}^{\alpha})^2.
$$

On the other hand, from (1.4) we obtain

(2.19)
$$
R_{ii} = (n-1) + nH^2 - H^2 - \sum_{j\beta \neq n+p} (h_{ij}^{\beta})^2
$$

$$
= (n-1)(1+H^2) - (h_{ii}^{\alpha})^2 - \sum_{j\beta \neq \alpha, n+p} (h_{ij}^{\beta})^2.
$$

Let Q be the infimum of the Ricci curvature of $Mⁿ$. Then from (2.19) we get

(2.20)
$$
\sum_{j\beta \neq \alpha, n+p} (h_{ij}^{\beta})^2 \leq (n-1)(1+H^2) - (h_{ii}^{\alpha})^2 - Q
$$

and

(2.21)
$$
\sum_{ij\beta\neq n+p} (h_{ij}^{\beta})^2 \leq n(n-1)(1+H^2) - nQ.
$$

The following inequality is obvious,

(2.22)
$$
\sum_{i} (h_{ii}^{\alpha})^4 \ge \frac{1}{n} \bigg[\sum_{i} (h_{ii}^{\alpha})^2 \bigg]^2 = \frac{1}{n} (\text{tr } H_{\alpha}^2)^2.
$$

Substituting (2.20) into (2.18) and using (2.22) we obtain

$$
\sum_{\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})
$$
\n
$$
\leq 4 \sum_{i} [(n-1)(1+H^{2}) - (h_{ii}^{\alpha})^{2} - Q](h_{ii}^{\alpha})^{2}
$$
\n
$$
= 4[(n-1)(1+H^{2}) - Q] \sum_{i} (h_{ii}^{\alpha})^{2} - 4 \sum_{i} (h_{ii}^{\alpha})^{4}
$$
\n
$$
\leq 4[(n-1)(1+H^{2}) - Q] \sum_{i} (h_{ii}^{\alpha})^{2} - \frac{4}{n} \sum_{\alpha \neq n+p} (\text{tr } H_{\alpha}^{2})^{2},
$$

and thus

$$
(2.23) \sum_{\alpha,\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) \leq [(n-1)(1+H^2) - Q] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

$$
- \frac{4}{n} \sum_{\alpha \neq n+p} (\text{tr } H_{\alpha}^2)^2.
$$

Combining (2.21), (2.23) with (2.17) we obtain

$$
(2.24) \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + [(-3n+4)(1+H^2) + 4Q] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
+ \frac{4}{n} \sum_{\alpha \neq n+p} (\text{tr } H_{\alpha}^2)^2 - \sum_{\alpha \neq n+p} (\text{tr } H_{\alpha}^2)^2
$$

\n
$$
\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + [(-3n+4)(1+H^2) + 4Q] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
- \frac{n-4}{n} \sum_{\alpha \neq n+p} (\text{tr } H_{\alpha}^2)^2
$$

\n
$$
\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + [(-3n+4)(1+H^2) + 4Q] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
- \frac{n-4}{n} [n(n-1)(1+H^2) - nQ] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2
$$

\n
$$
= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^2 + [n(n-2)(1+H^2) + nQ] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^2.
$$

Thus, we see from (2.24) that when $Q > (n-2)(1+H^2)$, then $\sum_{ii\alpha\neq n+p}(h^\alpha_{ii})^2 = 0$ and $Mⁿ$ is totally umbilical. This completes the proof of Theorem 3.

References

- [1] B. Y. Chen, *Some results of Chern-do Carmo-Kobayashi type and the length of the second fundamental form,* Indiana University Mathematics Journal 20 (1971), 1175-1185.
- [2] S. S. Chern, M. do Carmo and S. Kobayashi, *Minimal submanifolds* of a *sphere with second fundamental form of constant length,* in *Functional Analysis and Related Fields,* Springer-Verlag, New York, 1970, pp. 60-75.
- [3] N. Ejili, *Compact minimal submanifolds of a sphere with positive Ricei curvature,* Journal of the Mathematical Society of Japan 31 (1979), 251-256.
- [4] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Archiv der Mathematik 58 (1992), 582-594.
- [5] H. Sun, On *spacelike submanifolds of a pseudoriemannian space form,* Note di Matematica 15 (1995), 215-224.
- [6] H. Sun, *Pseudo-umbilical submanifolds of a space form* $N^{n+p}(C)$, Tsukuba Journal of Mathematics 20 (1996), 45-50.
- [7] H. Sun, *Totally really pseudo-umbilical submanifolds* of a *complex projective* space, Tokyo Journal of Mathematics 20 (1997), 427-434.
- [8] H. Sun, *Totally really pseudo-umbilical submanifolds of a quaternion space form,* Glasgow Mathematical Journal 40 (1998), 109-115.
- [9] S. T. Yau, *Submanifolds with constant mean curvature* H, American Journal of Mathematics 97 (1975), 76-100.