ON TOTALLY UMBILICAL SUBMANIFOLDS OF S^{n+p}

BY

HUAFEI SUN*

Department of Mathematics, Kumamoto University, Kumamoto 860-8555, Japan e-mail: sun@math.sci.kumamoto-u.ac.jp

ABSTRACT

In this paper, we will give some conditions under which the submanifolds in a unit sphere are totally umbilical.

0. Introduction

Let S^{n+p} be an (n+p)-dimensional unit sphere of constant curvature 1 and M^n an n-dimensional compact submanifold isometrically immersed in S^{n+p} . The following results are well-known.

THEOREM A [4]: Let M^n be an n-dimensional compact minimal submanifold in S^{n+p} , p > 1. If the scalar curvature of M^n is larger than or equal to $\frac{1}{3}n(3n-5)$, then M^n is totally geodesic or a Veronese surface in S^4 .

THEOREM B [9]: Let M^n be an n-dimensional compact minimal submanifold in S^{n+p} . If the sectional curvature of M^n is larger than or equal to (p-1)/(2p-1), then M^n is totally geodesic, the standard immersion of the product of the two spheres or a Veronese surface in S^4 .

THEOREM C [3]: Let M^n be an n-dimensional compact minimal submanifold in S^{n+p} , n > 4. If the Ricci curvature of M^n is larger than n - 2, then M^n is totally geodesic.

Let h be the second fundamental form of the immersion and ξ be the mean curvature vector; $\langle \cdot, \cdot \rangle$ denotes the scalar product of S^{n+p} . If there exists a function λ on M^n such that

$$(*) < h(X,Y), \xi >= \lambda < X, Y >$$

^{*} This research was partially supported by JSPS. Received June 23, 1997

for any tangent vectors X, Y on M^n , then M^n is called a pseudo-umbilical submanifold of S^{n+p} (cf. [1]). It is clear that $\lambda \geq 0$, and it is known that the mean curvature $H = |\xi|$ of M^n is constant (cf. Lemma 1). If the mean curvature vector $\xi = 0$ identically, then M^n is called a minimal submanifold of S^{n+p} . Every minimal submanifold of S^{n+p} is itself a pseudo-umbilical submanifold.

In this paper, we study pseudo-umbilical submanifolds and generalize Theorems A, B and C. We assume that the mean curvature H of M^n is not zero. Our results are the following:

THEOREM 1: Let M^n be an n-dimensional compact pseudo-umbilical submanifold in S^{n+p} , p > 1. If the scalar curvature of M^n is larger than or equal to $\frac{1}{3}n(3n-5)(1+H^2)$, then M^n is totally umbilical or n=2 and M^2 is a Veronese surface in $S^4(\frac{1}{\sqrt{1+H^2}})$.

THEOREM 2: Let M^n be an n-dimensional compact pseudo-umbilical submanifold in S^{n+p} , p > 1. If the sectional curvature of M^n is larger than or equal to $\frac{3p-5}{6(p-1)}(1+H^2)$, then M^n is totally umbilical or n=2 and M^2 is a Veronese surface in $S^4(\frac{1}{\sqrt{1+H^2}})$.

THEOREM 3: Let M^n be an n-dimensional compact pseudo-umbilical submanifold in S^{n+p} , p > 1, n > 4. If the Ricci curvature of M^n is larger than $(n-2)(1+H^2)$, then M^n is totally umbilical.

Remark: It is clear that our results generalize Theorem A, B and C.

ACKNOWLEDGEMENT: I would like to thank K. Ogiue for his advice and encouragement and would like to express my thanks to the referee for valuable suggestions.

1. Local formulas

Let S^{n+p} be an (n+p)-dimensional unit sphere of constant curvature 1 and M^n an n-dimensional pseudo-umbilical manifold isometrically immersed in S^{n+p} . We choose a local field of orthonormal frames e_1, \ldots, e_{n+p} in S^{n+p} such that e_1, \ldots, e_n are tangent to M^n . We make use of the following convention on the ranges of indices:

$$A, B, \ldots = 1, \ldots, n+p;$$
 $i, j, \ldots = 1, \ldots, n;$ $\alpha, \beta, \ldots = n+1, \ldots, n+p.$

Then the structure equations of S^{n+p} are given by

$$\begin{split} d\omega_A &= -\sum_B \omega_{AB} \wedge \omega_B, \omega_{AB} + \omega_{BA} = 0, \\ d\omega_{AB} &= -\sum_C \omega_{AC} \wedge \omega_{CB} + \frac{1}{2} \sum_{CD} K_{ABCD} \omega_C \wedge \omega_D, \\ K_{ABCD} &= \delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC}. \end{split}$$

Restrict these forms to M^n . Then

$$\omega_{\alpha} = 0, \quad \omega_{i\alpha} = \sum_{j} h_{ij}^{\alpha} \omega_{j}, \quad h_{ij}^{\alpha} = h_{ji}^{\alpha},$$

$$d\omega_{i} = -\sum_{j} \omega_{ij} \wedge \omega_{j},$$

$$d\omega_{ij} = -\sum_{k} \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \sum_{kl} R_{ijkl} \omega_{k} \wedge \omega_{l},$$

$$R_{ijkl} = \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} + \sum_{\alpha} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

$$d\omega_{ij} = \sum_{kl} \omega_{ik} \wedge \omega_{kl} + \sum_{kl} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

$$d\omega_{ij} = \sum_{kl} \omega_{ik} \wedge \omega_{kl} + \sum_{kl} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

$$d\omega_{ij} = \sum_{kl} \omega_{ik} \wedge \omega_{kl} + \sum_{kl} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

$$d\omega_{\alpha} = -\sum_{\beta} \omega_{\alpha\beta} \wedge \omega_{\beta},$$

$$d\omega_{\alpha\beta} = -\sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} + \frac{1}{2} \sum_{ij} R_{\alpha\beta ij} \omega_{i} \wedge \omega_{j},$$

$$R_{\alpha\beta ij} = \sum_{k} (h_{ki}^{\alpha} h_{kj}^{\beta} - h_{kj}^{\alpha} h_{ki}^{\beta}).$$
(1.2)

We call $H=|\xi|=\frac{1}{n}\sqrt{\sum_{\alpha}(\sum_{i}h_{ii}^{\alpha})^{2}}$ the mean curvature of M^{n} and $S=\sum_{ij\alpha}(h_{ij}^{\alpha})^{2}$ the square of the length of h; h_{ijk}^{α} and h_{ijkl}^{α} are defined by

(1.3)
$$\sum_{k} h_{ijk}^{\alpha} \omega_{k} = dh_{ij}^{\alpha} + \sum_{k} h_{ik}^{\alpha} \omega_{kj} + \sum_{k} h_{kj}^{\alpha} \omega_{ki} - \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha}$$

and

$$\sum_{l}h_{ijkl}^{\alpha}\omega_{l}=dh_{ijk}^{\alpha}+\sum_{l}h_{ijl}^{\alpha}\omega_{lk}+\sum_{l}h_{ilk}^{\alpha}\omega_{lj}+\sum_{l}h_{ljk}^{\alpha}\omega_{li}-\sum_{\beta}h_{ijk}^{\beta}\omega_{\beta\alpha}$$

respectively;

$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{m} h_{mj}^{\alpha} R_{mikl} + \sum_{\beta} h_{ij}^{\beta} R_{\beta\alpha kl}$$

where $h_{ijk}^{\alpha} = h_{ikj}^{\alpha}$. By (1.1) we have

$$(1.4) R_{ij} = (n-1)\delta_{ij} + \sum_{\alpha} (h_{ij}^{\alpha} \sum_{k} h_{kk}^{\alpha}) - \sum_{k\alpha} h_{ki}^{\alpha} h_{kj}^{\alpha}.$$

Now, let ξ be parallel to e_{n+p} ; then

(1.5)
$$\operatorname{tr} H_{n+p} = nH, \quad \operatorname{tr} H_{\alpha} = 0, \quad \alpha \neq n+p.$$

In order to prove our Theorems we need the following:

LEMMA 1 [5]: The mean curvature of pseudo-umbilical submanifolds in a space form of constant curvature is constant.

LEMMA 2 [4]: Let H_i $(i \geq 2)$ be symmetric $(n \times n)$ -matrices, $S_i = \operatorname{tr} H_i^2$ and $S = \sum_i S_i$. Then

$$\sum_{ij} N(H_i H_j - H_j H_i) + \sum_{ij} (\operatorname{tr} H_i H_j)^2 \le \frac{3}{2} S^2$$

and equality holds if and only if all $H_i = 0$ or there exist two H_i different from zero. Moreover, if $H_1 \neq 0$, $H_2 \neq 0$, $H_i = 0$ $(i \neq 1, 2)$, then $S_1 = S_2$ and there exists an orthogonal $(n \times n)$ -matrix T such that

$$TH_1{}^tT = \begin{pmatrix} f & 0 & 0 \\ 0 & -f & \\ 0 & & 0 \end{pmatrix}, \quad TH_2{}^tT = \begin{pmatrix} 0 & f & 0 \\ f & 0 & \\ 0 & & 0 \end{pmatrix}, \quad \text{where } f = \sqrt{\frac{S_1}{2}}.$$

Using Lemma 1 and a direct calculation we have (cf. [2, 9])

$$(1.6) \quad \frac{1}{2}\Delta \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^{2} = \sum_{ijk\alpha\neq n+p} (h_{ijk}^{\alpha})^{2} + \sum_{ij\alpha\neq n+p} h_{ij}^{\alpha}\Delta h_{ij}^{\alpha}$$

$$= \sum_{ijk\alpha\neq n+p} (h_{ijk}^{\alpha})^{2} + \sum_{ijk\alpha\neq n+p} h_{ij}^{\alpha}h_{kkij}^{\alpha}$$

$$+ \sum_{ijkl\alpha\neq n+p} h_{ij}^{\alpha}h_{lk}^{\alpha}R_{lijk} + \sum_{ijkl\alpha\neq n+p} h_{ij}^{\alpha}h_{li}^{\alpha}R_{lkik}$$

$$+ \sum_{ijk\alpha\neq n+p\beta} h_{ij}^{\alpha}h_{ki}^{\beta}R_{\alpha\beta kj}.$$

2. Proofs of Theorems

From (*) and (1.5) we get $\sum_{\alpha} \operatorname{tr} H_{\alpha} h_{ij}^{\alpha} = n \lambda \delta_{ij}$, $H^2 = \lambda$ and

$$h_{ij}^{n+p} = H\delta_{ij}.$$

Using (2.1) and (1.4) we obtain

$$(2.2) \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + n \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2} + \sum_{ijmk\beta \alpha \neq n+p} h_{ij}^{\alpha} h_{mi}^{\beta} h_{jm}^{\alpha} h_{kk}^{\beta}$$

$$+ 2 \left[\sum_{\beta \alpha \neq n+p} \operatorname{tr}(H_{\alpha}H_{\beta})^{2} - \sum_{\beta \alpha \neq n+p} \operatorname{tr}(H_{\alpha}^{2}H_{\beta}^{2}) \right] - \sum_{\beta \alpha \neq n+p} [\operatorname{tr}(H_{\alpha}H_{\beta})]^{2}$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + n \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2} + \sum_{ijkm\beta \alpha \neq n+p} h_{ij}^{\alpha} h_{mi}^{\alpha} h_{mj}^{\beta} h_{kk}^{\beta}$$

$$+ 2 \left[\sum_{\beta,\alpha \neq n+p} \operatorname{tr}(H_{\alpha}H_{\beta})^{2} - \sum_{\beta,\alpha \neq n+p} \operatorname{tr}(H_{\alpha}^{2}H_{\beta}^{2}) \right] - \sum_{\beta,\alpha \neq n+p} [\operatorname{tr}(H_{\alpha}H_{\beta})]^{2}$$

$$+ 2 \left[\sum_{\alpha \neq n+p} \operatorname{tr}(H_{\alpha}H_{n+p})^{2} - \sum_{\alpha \neq n+p} \operatorname{tr}(H_{\alpha}^{2}H_{n+p}^{2}) \right] - \sum_{\alpha \neq n+p} [\operatorname{tr}(H_{\alpha}H_{n+p})]^{2}$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + n \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2} + nH^{2} \sum_{\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$- \sum_{\beta,\alpha \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) - \sum_{\beta,\alpha \neq n+p} [\operatorname{tr}(H_{\alpha}H_{\beta})]^{2}.$$

When p = 2, by a simple calculation from (2.2) we get

$$\frac{1}{2}\Delta \sum_{ij} (h_{ij}^{n+1})^2 \ge [n(1+2H^2) - S] \sum_{ij} (h_{ij}^{n+1})^2.$$

It shows that when $S < n(1+2H^2)$, then $\sum_{ij} (h_{ij}^{n+1})^2 = 0$ and M^n is totally umbilical.

When $p \geq 3$, applying Lemma 2 to (2.2) we get

$$(2.3) \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + n \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2} - \frac{3}{2} \Big[\sum_{\alpha \neq n+p} \operatorname{tr} H_{\alpha}^{2} \Big]^{2} + nH^{2} \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$\geq n \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2} - \frac{3}{2} \sum_{\alpha \neq n+p} (h_{ij}^{\alpha})^{2} (S - nH^{2}) + nH^{2} \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$= \left(n - \frac{3}{2}S + \frac{5}{2}nH^{2} \right) \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}.$$

Since M^n is compact, we see from (2.2) that when

$$S \leq \frac{2}{3}n\Big(1+\frac{5}{2}H^2\Big)$$

or the scalar curvature R of M^n satisfies

$$R \geq rac{1}{3}n(3n-5)(1+H^2),$$

then $\sum_{ij\alpha\neq n+p}(h_{ij}^{\alpha})^2=0$, i.e. M^n is totally umbilical or $S=\frac{2}{3}n(1+\frac{5}{2}H^2)$. In the latter case, using the same method as in [2] we conclude that n=2 and the equality

$$\sum_{lpha,eta
eq n+p} N(H_lpha H_eta - H_eta H_lpha) + \sum_{lpha,eta
eq n+p} (\operatorname{tr} H_lpha H_eta)^2 = rac{3}{2} igg[\sum_{ijlpha
eq n+p} (h_{ij}^lpha)^2 igg]^2$$

holds. Thus we may assume

(2.4)

$$H_{n+1} = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}, \quad H_{n+2} = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}, \quad H_{n+p} = \begin{pmatrix} H & 0 \\ 0 & H \end{pmatrix}, \quad H_{\alpha} = 0,$$

where $a \neq 0$, $\alpha \neq n+1, n+2, n+p$.

Now we put

$$S_{lpha} = \sum_{ij} (h_{ij}^{lpha})^2,$$
 $p\sigma_1 = \sum_{lpha} S_{lpha} = S,$ $p(p-1)\sigma_2 = 2\sum_{lpha < eta} S_{lpha} S_{eta}.$

It can be seen easily (cf. [2]) that

(2.5)
$$p^{2}(p-1)(\sigma_{1}^{2}-\sigma_{2})=\sum_{\alpha<\beta}(S_{\alpha}-S_{\beta})^{2}.$$

By a direct calculation, using (2.4), we get

(2.6)
$$p^{2}(p-1)\sigma_{1}^{2} = (p-1)(4a^{2} + 2H^{2})^{2},$$

(2.7)
$$p^{2}(p-1)\sigma_{2} = p(8a^{4} + 16a^{2}H^{2}),$$

and

(2.8)
$$\sum_{\alpha < \beta} (S_{\alpha} - S_{\beta})^2 = 8(a^2 - H^2)^2.$$

Substituting (2.6) - (2.8) into (2.5) we obtain

$$(2.9) (p-1)(4a^2+2H^2)^2-p(8a^4+16a^2H^2)=8(a^2-H^2)^2.$$

From (2.9) we conclude

$$(p-3)(2a^4 + H^4) = 0,$$

because $2a^4+H^4\neq 0$, which implies p=3. Thus by [2], we know that M^2 is a Veronese surface in $S^4(\frac{1}{\sqrt{1+H^2}})$. Since $\frac{2}{3}n(1+\frac{5}{2}H^2)< n(1+2H^2)$, when p=2 and $S\leq \frac{3}{2}n(1+\frac{5}{2}H^2)$ or $R\geq \frac{(3n-5)}{n}(1+H^2)$, then M^n is totally umbilical. This completes the proof of Theorem 1.

Proof of Theorem 2: For any positive real number a (0 < a < 1), we have

$$(2.10) \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + (1+a) \left(\sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{lk}^{\alpha} R_{lijk} + \sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{li}^{\alpha} R_{lkik} \right)$$

$$+ \sum_{ijk\alpha \neq n+p\beta} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta kj} - a \left(\sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{lk}^{\alpha} R_{lijk} + \sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{li}^{\alpha} R_{lkik} \right)$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + (1+a) \left(\sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{lk}^{\alpha} R_{lijk} + \sum_{ijkl\alpha \neq n+p} h_{ij}^{\alpha} h_{li}^{\alpha} R_{lkik} \right)$$

$$- na \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2} - nH^{2}a \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$+ \frac{1}{2} (a-1) \sum_{\beta\alpha \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) + a \sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}H_{\beta})^{2}.$$

For fixed $\alpha \neq n + p$, we can choose e_1, \ldots, e_n such that $h_{ij}^{\alpha} = h_{ii}^{\alpha} \delta_{ij}$. Thus, we have (cf. [9])

$$(2.11) \qquad \sum_{ijkl\alpha\neq n+p} h_{ij}^{\alpha} h_{lk}^{\alpha} R_{lijk} + \sum_{ijkl\alpha\neq n+p} h_{ij}^{\alpha} h_{li}^{\alpha} R_{lkik} \ge nK \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2,$$

where K is the infimum of the sectional curvature of M^n .

When p = 2, from (2.10) and (2.11) we get

$$\frac{1}{2}\Delta\sum_{ij}(h_{ij}^{n+1})^2 \geq (a+1)nK\sum_{ij}(h_{ij}^{n+1})^2 - na(1+H^2)\sum_{ij}(h_{ij}^{n+1})^2 + a[\sum_{ij}(h_{ij}^{n+1})^2]^2.$$

It shows that when

$$K \ge \frac{a}{a+1}(1+H^2),$$

then $\sum_{ij} (h_{ij}^{n+1})^2 = 0$ and M^n is totally umbilical.

When $p \geq 3$, combining Lemma 2, (2.11) with (2.10) we get

(2.12)
$$\frac{1}{2}\Delta \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^{2} \ge [(1+a)nK - na - nH^{2}a] \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^{2} - \frac{3}{4}(1-a)(\sum_{\alpha\neq n+p} \operatorname{tr} H_{\alpha}^{2})^{2} + \frac{1}{2}(1+a) \sum_{\alpha,\beta\neq n+p} (\operatorname{tr} H_{\alpha}H_{\beta})^{2}.$$

On the other hand, we can choose $e_{n+1}, \ldots, e_{n+p-1}$ such that $\operatorname{tr} H_{\alpha}H_{\beta} = \operatorname{tr} H_{\alpha}^2 \delta_{\alpha\beta}$. So we have

(2.13)
$$\sum_{\alpha,\beta \neq n+p} (\operatorname{tr} H_{\alpha} H_{\beta})^2 = \sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}^2)^2.$$

The following inequality is obvious,

(2.14)
$$\sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}^{2})^{2} \geq \frac{1}{p-1} \left(\sum_{\alpha \neq n+p} \operatorname{tr} H_{\alpha}^{2} \right)^{2},$$

and the equality in (2.14) holds if and only if all tr H_{α}^2 are equal. Substituting (2.13) and (2.14) into (2.12) and taking a = (3p - 5)/(3p - 1), we get (2.15)

$$\frac{1}{2}\Delta \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2 \ge \left[\frac{6(p-1)n}{3p-1}K - \frac{(3p-5)n}{3p-1} - \frac{(3p-5)n}{3p-1}H^2\right] \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2.$$

So, when

(2.16)
$$K \ge \frac{3p-5}{6(p-1)}(1+H^2),$$

then $\sum_{ij\alpha\neq n+p}(h_{ij}^{\alpha})^2=0$, i.e. M^n is totally umbilical or

$$K = \frac{3p-5}{6(p-1)}(1+H^2).$$

In the latter case, the equality

$$\sum_{\alpha,\beta\neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) + \sum_{\alpha,\beta\neq n+p} (\operatorname{tr} H_{\alpha}H_{\beta})^2 = \frac{3}{2} \left[\sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2 \right]^2$$

holds. Thus by Lemma 2 we see that all $H_{\alpha} = 0$, $\alpha \neq n + p$ and M^n is totally umbilical or there exist only two of $H_{\alpha} \neq 0$, $\alpha \neq n + p$. However, the equality (2.16) implies equality (2.14), so that all $\operatorname{tr} H_{\alpha}^2$ are equal. This is a contradiction. This proves Theorem 2.

Proof of Theorem 3: We compute directly from (1.6):

$$(2.17) \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + n(1+H^{2}) \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$- \sum_{\alpha,\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) - \sum_{\alpha,\beta \neq n+p} (\operatorname{tr} H_{\alpha}H_{\beta})^{2}$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + n(1+H^{2}) \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2} - \sum_{\alpha,\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})$$

$$- \sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}^{2})^{2}.$$

When p = 2, from (2.17) we get

$$\frac{1}{2}\Delta \sum_{ij} (h_{ij}^{n+1})^2 \ge n(1+H^2) \sum_{ij} (h_{ij}^{n+1})^2 - \Big(\sum_{ij} (h_{ij}^{n+1})\Big)^2.$$

On the other hand, by the assumption in Theorem 3 we get

$$(n-2)(1+H^2) < R_{ii} = (n-1)(1+H^2) - \sum (h_{ij}^{n+1})^2$$

and so

$$\sum_{ij} (h_{ij}^{n+1})^2 < n(1+H^2).$$

Combining these two inequalities we get

$$\begin{split} \frac{1}{2} \Delta \sum_{ij} (h_{ij}^{n+1})^2 \geq & n(1+H^2) \sum_{ij} (h_{ij}^{n+1})^2 - \Big(\sum_{ij} (h_{ij}^{n+1})^2 \Big)^2 \\ \geq & n(1+H^2) \sum_{ij} (h_{ij}^{n+1})^2 - n(1+H^2) \sum_{ij} (h_{ij}^{n+1})^2 = 0. \end{split}$$

From this we see that $\sum_{ij} (h_{ij}^{n+1})^2$ is constant and

$$\left[n(1+H^2) - \sum_{ij} (h_{ij}^{n+1})^2\right] \sum_{ij} (h_{ij}^{n+1})^2 = 0,$$

which implies that $\sum_{ij} (h_{ij}^{n+1})^2 = 0$, i.e. M^n is totally umbilical since $\sum_{ij} (h_{ij}^{n+1})^2 < n(1+H^2)$. When $p \geq 3$, for fixed $\alpha \neq n+p$, we have

$$\sum_{\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) = \sum_{ij\beta \neq \alpha, n+p} (h_{ij}^{\beta})^2 (h_{ii}^{\alpha} - h_{jj}^{\alpha})^2.$$

Since

$$(h_{ii}^{\alpha} - h_{ij}^{\alpha})^2 \le 2[(h_{ii}^{\alpha})^2 + (h_{ij}^{\alpha})^2]$$

we get

(2.18)
$$\sum_{\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) \leq 4 \sum_{ij\beta \neq \alpha, n+p} (h_{ij}^{\beta})^2 (h_{ii}^{\alpha})^2.$$

On the other hand, from (1.4) we obtain

(2.19)
$$R_{ii} = (n-1) + nH^{2} - H^{2} - \sum_{j\beta \neq n+p} (h_{ij}^{\beta})^{2}$$
$$= (n-1)(1+H^{2}) - (h_{ii}^{\alpha})^{2} - \sum_{j\beta \neq \alpha, n+p} (h_{ij}^{\beta})^{2}.$$

Let Q be the infimum of the Ricci curvature of M^n . Then from (2.19) we get

(2.20)
$$\sum_{j\beta \neq \alpha, n+p} (h_{ij}^{\beta})^2 \le (n-1)(1+H^2) - (h_{ii}^{\alpha})^2 - Q$$

and

(2.21)
$$\sum_{ij\beta \neq n+n} (h_{ij}^{\beta})^2 \le n(n-1)(1+H^2) - nQ.$$

The following inequality is obvious,

(2.22)
$$\sum_{i} (h_{ii}^{\alpha})^{4} \ge \frac{1}{n} \left[\sum_{i} (h_{ii}^{\alpha})^{2} \right]^{2} = \frac{1}{n} (\operatorname{tr} H_{\alpha}^{2})^{2}.$$

Substituting (2.20) into (2.18) and using (2.22) we obtain

$$\begin{split} & \sum_{\beta \neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) \\ & \leq 4 \sum_{i} [(n-1)(1+H^{2}) - (h_{ii}^{\alpha})^{2} - Q](h_{ii}^{\alpha})^{2} \\ & = 4 [(n-1)(1+H^{2}) - Q] \sum_{i} (h_{ii}^{\alpha})^{2} - 4 \sum_{i} (h_{ii}^{\alpha})^{4} \\ & \leq 4 [(n-1)(1+H^{2}) - Q] \sum_{i} (h_{ii}^{\alpha})^{2} - \frac{4}{n} \sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}^{2})^{2}, \end{split}$$

and thus

(2.23)
$$\sum_{\alpha,\beta\neq n+p} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}) \leq [(n-1)(1+H^{2}) - Q] \sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^{2} - \frac{4}{n} \sum_{\alpha\neq n+p} (\operatorname{tr} H_{\alpha}^{2})^{2}.$$

Combining (2.21), (2.23) with (2.17) we obtain

$$(2.24) \quad \frac{1}{2} \Delta \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + [(-3n+4)(1+H^{2})+4Q] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$+ \frac{4}{n} \sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}^{2})^{2} - \sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}^{2})^{2}$$

$$\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + [(-3n+4)(1+H^{2})+4Q] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$- \frac{n-4}{n} \sum_{\alpha \neq n+p} (\operatorname{tr} H_{\alpha}^{2})^{2}$$

$$\geq \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + [(-3n+4)(1+H^{2})+4Q] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$- \frac{n-4}{n} [n(n-1)(1+H^{2})-nQ] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}$$

$$= \sum_{ijk\alpha \neq n+p} (h_{ijk}^{\alpha})^{2} + [n(n-2)(1+H^{2})+nQ] \sum_{ij\alpha \neq n+p} (h_{ij}^{\alpha})^{2}.$$

Thus, we see from (2.24) that when $Q > (n-2)(1+H^2)$, then $\sum_{ij\alpha\neq n+p} (h_{ij}^{\alpha})^2 = 0$ and M^n is totally umbilical. This completes the proof of Theorem 3.

References

- B. Y. Chen, Some results of Chern-do Carmo-Kobayashi type and the length of the second fundamental form, Indiana University Mathematics Journal 20 (1971), 1175-1185.
- [2] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional Analysis and Related Fields, Springer-Verlag, New York, 1970, pp. 60-75.
- [3] N. Ejili, Compact minimal submanifolds of a sphere with positive Ricci curvature, Journal of the Mathematical Society of Japan 31 (1979), 251-256.
- [4] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Archiv der Mathematik 58 (1992), 582-594.
- [5] H. Sun, On spacelike submanifolds of a pseudoriemannian space form, Note di Matematica 15 (1995), 215–224.
- [6] H. Sun, Pseudo-umbilical submanifolds of a space form $N^{n+p}(C)$, Tsukuba Journal of Mathematics **20** (1996), 45–50.
- [7] H. Sun, Totally really pseudo-umbilical submanifolds of a complex projective space, Tokyo Journal of Mathematics 20 (1997), 427-434.
- [8] H. Sun, Totally really pseudo-umbilical submanifolds of a quaternion space form, Glasgow Mathematical Journal 40 (1998), 109-115.
- [9] S. T. Yau, Submanifolds with constant mean curvature II, American Journal of Mathematics 97 (1975), 76-100.